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Interpolation expressions of the equations of state and the coefficient of thermal conductivity
are presented for iron («-phase), aluminum, nickel, lead, and titanium. These expressions
constitute a new way of writing the equations of state presented in [1]. The expression for the
ncold energy" is interpolated within the compression interval 0.9=< § < 2.0 in such a way
that the cold pressure and the square of the velocity of sound would be polynomials of powers
61,

1. The objective of this work is to reduce the equation of state to a form which is convenient in the
study of processes in a transition region, when the pressure is still close to unity, but nonlinear processes
are already significant. In this region we cannot confine ourselves to the consideration of the spherical
strain tensor. Therefore we must introduce, into the cold energy of the material, a term which takes into
account the distortion energy. This term is introduced in such a way that the energy of cold deformation in
the case of small strains would coincide with the cold energy used in the linear theory of elasticity. In the
case of comparatively small compressions and small deviators of the strain tensor, the expressions being
used lead to the ratio of velocities of the longitudinal and transverse waves which according to the theory
of Debye arises from the representation of the thermal part of the energy [1] (the velocity of the transverse
waves depends on the temperature, but the authors found no information in the literature which would en-
able to take into account this dependence: alsothe tensor dependence of thermal conductivity on the direc-
tion of deformation of the medium is not taken into account).

The investigation being described here was undertaken to formulate the equation of state in a form
which is suitable for the closure of the equations of the nonlinear theory of elasticity proposed in [2]. For
the complete closure of these equations it is necessary yet to specify the dependence of the relaxation
time 7 of shear stresses on the state of the medium.

For the description of a triaxial strain x;'=a;xX; we can use the tension coefficients a; along the prin-
cipal axes (i=1, 2, 3).

Following [2], instead of a; we introduce the parameters and invariants of the strain tensor
8 =p/po=(amas)", &; =lna, di =a; — (&, + o +a3)/3
D =1, (d? + df + df), A = didydy = V5 (@7 F & + 7))
For small strains «j practically coincide with &j, the principal values of the strain tensor, while a;
coincides with the principal values of its deviator. Considering strains that are close to spherical trains

we confine ourselves to the linear dependence of the internal energy per unit mass of the matter on D with
a coefficient which depends on the density.

The dependence of the energy on the entropy S has been taken from [1]. The coefficient v (5), de-
pending on the temperature, in the expression for the Debye temperature 9 =9yy (§) is represented by an
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TABLE 1

Fe Al Cu Ni Pb T
ce, km fsec 5.694 6.1215 4.651 5.437 2.151 5.853
bo, km /sec 2.8659 2.9408 2.1409 2.4852 0.84231 2.9633
0o, g/cm3 7.840 2.785 8.900 8.860 11.340 4.510
10, 107 10sec 0.742 0.767 0.950 0.797 3.40 0,787
o, © 420 390 315 375 88 380
co*, km/sec| 5.718 6.201 4.683 5.616 2.213 5.835
TABLE 2
Fe Al Cu N1 Pb Ti
€0 —0.042677 | —0.086910 | —0,090295 0.13409 | —0.,087230 10.9249
eor 0.476118 4.49551 | —0.047651 | —1.25740 | —0.392806 33.0090
€2 0.639602 | —0.38037 | —0.83229 | —1.099112 | —0,087247 31.14893
en 2.6917 3.5769 3.4054 8.0180 4.8950 1.18037
e12 —0.017537 1.0168 0.89094% 10.661 6.9338 —2.,84806
e13 —0.13352 | —0.44743 | —0.40499 44,448 1.4611 1.5210
Yo 0.005786 0.000647 0.005713 0.005351 0.0022838 0.003773
T1 1.6723 2.14171 2.02934 3.95918 2.7746 1.0762
T2 —0.40804 | —0.33262 | —0.3139%4 4.0723 1.0464 —1.7366
T3 0.11311 0.093944 0.084733 0.70964 | —0.11896 0.82778
104 o 0.9021 3.4845 4.0831 0.1777 0.07468 0.04201
Ky 0.33095 0.14615 0.19683 0.39467 0.68182 0.28947
S0 0.7143 0.7520 0.9390 0.7820 3.335 0.7710

interpolation polynomial. An interpolation is carried out for the Debye function which in the case being
considered is suitable for temperatures which are not too low. In the range of temperatures being studied
we can neglect the high-temperature corrections ([1], Chapter 3).

We present below the expressions for the equation of state and the coefficient of thermal conductivity.
The required explanations of the method used to obtain them are given below

E (6, D, s)=1;(co® —*/3bo")(0 — 1)%0 (8) + 2bs% (6) D+ co™vuly (8) £ (5) — g (so)(1 + v1 (O))]
g(s) =5+ 0.05/s, s =293/6,

S =

Co

]

10 (n (s / o) + 0.025 (572 — 53]

% = (co*PaT, / B0) [kod's/ (1 — a8y / T},

Here by s we have denoted the en‘Eropy variable

s=1T/(0py(6))
eo(8) =1 4 (6 — 1)egy + e /6 + eqe-3 (Ind +1 —8 + (6 — 1)2/2) /(8 — 1)°]
e, () =1 + ea(d — 1) + e0a(® — 1)% + 15 (6 — 1)?
P0) =1+ 18 — 1) 4+ v2(8 — 1)2 + 75(6 —1)°

T =0,7(8)s

The values of the quantities with dimensions ¢y, by, pg, 7¢, 0y and the remaining dimensionless coeffi-
cients are presented in Tables 1 and 2. They all have the meaning of interpolation constants.

The equation of state presented above allows us, by means of the relationships ([2])
0; = — p*E, + pEpd;, p = p?E,

to compute the principal stresses o and the mean pressure

p=—(0,+ 0,05 /3

As a result, we have

Do) = 1 4 pox(8 — 1) 4 poa(@ — 1) + pos(d — 1)°

0; = — p + 2pb*0e,(6)d;
P = pol(co® — */568®) (6 — 1)po(8) + bo?py(8)62D -+ ¢y 5%(p2(B) g () — P2 (1)g (s0))]

Pi8) = pro + puld — 1) + P28 — 1)?
D8) = Ppao + pua(® — 1) -+ pan(8 — 1)2
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TABLE 3

Fe Al Cu ' Ni Pb Ti

PpoL 1.4527 2.1167 1.94175 2.5024 1.86895 4.67294
Poz 0.15063 1.44810 0.83013 2.4222 0.67277 3.5558
Pos —0.064015 | —0.13037 | —0.13544 0.20113 | —0.13085 16.3873
Pro 2.6917 3.5769 3.4054 8.0180 4.8950 ©1.18037
pu —0.035074 2.0336 1.78118 21.322 13.868 —5.6961
piz —0.40056 | —1.34229 | —1.2150 133.34 4.3833 4.5630
P2 1.6723 2,417 2.02934 3,95918 2.7746 1.0762
pa | —0.81608 | —0.66524 | —0.62788 8.1446 2.0928 —3.4732
P2 0.33933 0.28183 0.25420 0.21289 | —0.35679 2.4833
€1 2.8332 4.0314 3.74843 5.9744 3.95792 6.55516
23 0.29332 2.6973 2.0385 8.21226 2.9530 6.048182
c3 —0.21467 1 —0.49868 | —0.50313 12.9625 0.90073 43.6665
by 2.6917 3.5769 3.4054 8.0180 4.8950 1.18037
ba —0.017537 1.0168 0.89094 10.661 6.9338 —2.84806
b3 —0.13352 | —0.44743 | —0.40499 44.448 1.4611 1.5210

The expressions for the squares of the velocities of the longitudinal and transverse sound waves, c?
and b?, calculated for a spherical strain tensor @y =a,=a3= 571/%), have the form

@ = coll + (6 — 1) + x(6 — 1)2 + ¢5(6 — 1)1 cqpag (5) (8/08) [62p4(6)]
b2 = b2l1 + by(6 — 1) + ba(6 — 1)? + by(d — 1)7]

The square of the cold velocity of sound ¢ *2 is obtained by discarding, from the expression for c?, the
term proportional to the entropy function g(s)

cx? = e®ll 4 e — 1) + o6 —1)% 4 c4(6 — 1)%

[In the interpolation used b =b(8) =b «(6) and does not depend on temperatures.] The coefficients pij, cj, bj
of the interpolation polynomials for the pressure and the velocity of sound are presented in Table 3. In all
the expressions presented under 6 = p /p, we understand the compression relative to the state at a zero
pressure and T =293°. The velocities of sound ¢; and b, are referred to the state § =1, D=0, T=0. In
Table 1 we have presented the velocities of sound ¢;* for § =1, D=0, T =293°, calculated from the expres-
sion

co* = coll + vog (50)(2Peo + Pai)]'

2. The expression'([ll)
34 » 3K o,
E, ()= By %P [B(1—&6"9)]— .;o_.ém

was taken as the initial equation of state of the cold matter.

The representations of the cold pressure and the modulus of cold volume compression that arise from
this expression have the form

P« (8) = pod? a(%* = Adsexp [B(1 — 8-')] — Kd%
1 9 24 ., B ., » I
M(6)=ﬁ—§§'=m6_/’(1+—2—6 «a)exp[B(i—(S /s)]__gp_oéls

The modulus of volume compression is connected with the velocities of the longitudinal and trans-
verse sound waves c, (6) and b« (6) by the relationship

M(8) = c® —* /5 by’

The velocities marked with an asterisk are calculated from the cold equation of state. In [1] three
different methods are proposed for the interpolation of the dependence of the Debye temperature on the
density ([1], page 43, (2.45)). The variant with m=0 is equivalent to the relationship

%(8) = 0,8+ Y M (8)/ M (1)
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TABLE 4

Fe Al Cu l Ni \ Pp ‘ Ti

A 0.37347 0.22863 0.27797 0.17401 0.28332 0.09161
r 1.68 2.13 2.04 1.94 2.78 1.18
B 6.9790 10.578 9.6801 13.603 9.1318 22,8724
g —0.102 —0.322 --0.234 1.034 0.580 —3.328
1, g/molel 55.85 26.98 63.54 58.71 207.21 47.90
TABLE 5 The constants A, B, pg, 6y, € characterize the
material and are presented in [1]. The quantity K has the
Fe Al Cu Ni Py Ti
form
a, 10~3degree~] 651 | 423 | 433 | 6921 428 | 546 60 3R [ 293
oo, 10° gogm 7 | 73.3 | 226 l 402 | 58.6 | 34.8 | 21.0 K=A+T 5= I:To + 0.0590/293]
secs-degree

Here T is the Griineisen parameter, R is the univer-
sal gas constant and y is the atomic weight.

To determine the velocity of transverse waves, we postulate a Debye interpolation expression for
8 (p) having the form

1 2 kh \3 183L2 8
e

where h is the Planck constant, k is the Boltzmann constant and L is the Avogadro number. From this ex-
pression, as well as from the equation

e —*/a b2 = M (8)

we can determine the values by (6) for each fixed 5. The authors set up tables of the functions M (9), b 42
(8), v (8) =00) /8, in the interval 0.9 = 6 = 2.0 ; these were then approximated by cubic polynomials of ¢ — 1).
The expressions for E , (5, D) p« (5) are obtained by quadratures of the relationships

dp 81, (5,0 ) O, (8,D
Pe oM (8), e —£el) SR D) o2 9)

The expression for the total energy is obtained by addition, to E, (6, D), of the thermal energy of
Debye

E =E,(5, D) +0(3)g(T/6(8)
Putting s=T/6 (6), we obtain

s = [F+eo(H]. po-

__.—p'—
1]

1
S=1g0 +S£§-§’- ds
according to the theory of Debye.

The expressions approximating D(z) for high and low temperatures are known, and are presented in
[1]. Having in view application to deformation of metals during explosions, when we can assume that the
temperature is higher than or not much less than the Debye temperatures, the approximate expression

Dz)=1—"32z+ 5 2*
holds, from which

2(s) =%§-s(1+%1s—2), S=% [lns—l—ﬁ] — 5,

These expression have a limited region of applicability; for example, in the case s =1/20 the mono-
tonicity of S (s) is violated. When there is a need to consider low temperatures, we can use more accurate
approximations of D (z), making use of the same relationships for E « (5, D), 8 =7 (6)0y. In view of these
restrictions the interpolation expressions of Sec. 1 are applicable for intervals of compressions 0.9= § <
2.0 and temperatures 100 = T = ,, Where §, is the temperature of electron degeneracy (T ~0,5 - 10° 743,
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Ze is the charge of the nucleus, and e is the charge of an electron). The deviation of the interpolated
quantities vy (8), b +2(8),and M (6) from the values of the approximating polynomials on the interval 1.0 <
5 = 2.0 is approximately 1%, while on the interval 0.9 = § = 1.0 it is respectively approximately 5%.

The values of the coefficients A, B, ¢, I', as well as the atomic weight u, used in the interpolation
expressions of Sec.1 arepresentedinTable4. When carrying out the calculations for the universal physical
constants, we took the following values: h=6.62-10~%" erg-sec, k=1.38 - 10-% erg/degree, 1.=6.02 " 10°
kmole™!, R=8.31 107 g cm/sec? - degree - mole.

3. In metals the process of heat conduction takes place in the main as a result of diffusion of free
electrons; the time for the establishment of a thermal equilibrium between the electron gas and the lattice
is of the order of 107!! sec. In connection with this, when considering processes with characteristic times
greater than 107 sec, we need not take into account the heat exchange between the lattice and the electron
gas, taking their temperatures as identical, and can assume that the heat propagation is given by the coeffi-
cient of thermal conductivity w of electrons.

Between the electrical conductivity o, the thermal conductivity w and the temperature T (T > 4g) the
relationship (the Wiedemann—Franz law)

#/gT = const
holds.

This law is valid in the case 6 < T < ¢ for pure metals (9, is the degeneracy temperature of free
electrons). For metals contaminated by additions it is valid for 0 < T < 64 ([3, 4]).

The electrical resistance o~! linearly depends on the temperature (see [3])
o-1 = (T — T*)/A

To clarify the dependence of o on the density p, we can use the proportionality between o and the
density of electron gas and the inverse proportionality of o to the magnitude of the maximum velocity vy
of electrons in the degenerate Fermi gas ([3])

—_— 2,
N = o (3N
C~TUP,, Uy = V !’ P«O“‘ m WV

Here N is the number of free electrons in the volume V, m is the mass of an electron, N/V is propor-
tional to the density of the material p =p,6. Hence o ~ o¥s. Combining the dependence of ¢ on the tem-
perature and density with the Wiedemann—Franz law, we have

o~ &) (1 — T*/T)

We represent this relationship in the form
(S, T) = eo*teods/(1 — kiBy 1 T)

The multiplier with dimensions is made up from the velocity of longitudinal sound waves c;, the Debye
temperature § ,,and the Debye time 7,=27h/9,. The dimensionless constants k, and k; are chosen with
respect to the values of the coefficient of thermal conductivity w, for T =293°, 6 =1, and from the tempera-~
ture coefficient of resistance « =(—1/0) (8¢ /8T), which are tabulated in [5]. The values used are given
in Table 5.
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